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Application of FX Singular Spectrum Analysis on Structural Data 

Summary 
The application of the Singular Spectrum Analysis (SSA) method on seismic data has been extensively 
studied by researchers over the past number of years. Ulrych et al (1988) initially applied eigenimage 

filtering to seismic data. Trickett furthered this work by using frequency slices and extending eigeni-

mage filtering to 3D data (Trickett, 2003, 2009). This poster studies the results of the SSA method 

when applied to noisy structural data. On both synthetic and real data, we show that the FX SSA filter 

(Cadzow filtering) preserves faults much better than the standard FX prediction filter (Canales, 1984). 

This poster discusses how the discontinuity in a plane wave would affect the rank of the trajectory  
matrix in SSA. 

 

Introduction 
The Singular Spectrum Analysis (FX SSA) method (Sacchi, 2009) has been widely used for analysis of 

time series in various fields outside geophysics such as meteorology, hydrology, sociology and economic 
forecasts, before being applied to seismic data processing. FX SSA is also known as Cadzow FX filter 

(Cadzow, 1988) or the Caterpillar method (Golyandina et. al., 2001, 2007). Trickett used SSA  

separately on frequency slices and furthered its application to 3D using FXY eigenimage filtering. 

 

The purpose of this poster is to demonstrate on both synthetic and real data that the SSA method (FX 

Cadzow filter) works much better than standard FX in preserving dips, diffractions and faults on  
structured data. 

In Eigenimage filtering (1) the corresponding traces for one frequency slice can be taken from any 

square grid such as a 3D stack or a cross-spread of prestack data. In Cadzow filtering the correspond-

ing traces can come from a single shot gather ordered by offset or from 2D stack traces ordered by 
CDP. In Hybrid (C2) filtering (Trickett, 2009) or 2D-extension (Golyandina et.al, 2007) block matrix A is 

composed of sub-matrices (Ai) which may be constructed from neighboring shot gathers. This increase 

in statistics improves the filter quality and does a better job at removing the random noise. To illus-

trate, example (4) shows three shots combined together to form matrix A. 

 

Standard FX filter is based on an assumption that an ensemble of seismic traces has few linear events 
of constant dip and random noise. Therefore, FX filtering does not work well when the dip varies within 

the filter width or when there is a discontinuity of events within the filter width. Cadzow FX filtering 

does not have such limitations as it exploits another property – matrix rank. By increasing the rank we 

can approximate any complex structure. 

 

Sacchi  presented a simple explanation why in FX SSA the rank of the trajectory matrix r=1 for a plain 
wave (Sacchi, 2009).  The plane wave is represented in TX and FX domain as s(t,x)=w(t-px) and S

(w,x)=W(w)e-iwpx, where x is space coordinate, t – time, and w – angular frequency. For a regularly 

sampled coordinate x=(k-1)∆x, and for one fixed frequency, let Sn=W e –iαn, where α=wp∆x. 

 

For an example with 7 equally spaced traces, the trajectory matrix is  

 

 

and by substitution of expression for Sn in M, Sacchi shows that this trajectory matrix has a rank r=1. 

 

Following Sacchi, let us consider an example when our plain wave contains a discontinuity. Such a  

discontinuity can be simulated by dropping one trace from the series. So, instead of the plain wave  

series shown in Figure 2.a 
 

   S1, S2, S3, S4, S5, S6, S7       (2) 

 
let us consider 
 

     S1, S2, S4, S5, S6, S7, S8       (3) 
 

where S3 is dropped so that all traces are shifted and a new trace S8 is added to make the same  

number of traces (Figure 2.b) 
 

Figure 2. Plain wave and plain wave with discontinuity 

 
a.  Plain wave           b. Plane wave with discontinuity – S3 omitted 

 
        S1   S2   S3   S4   S5   S6  S7                                            S1   S2   S4   S5   S6   S7  S8 

 

 

In the case of such a discontinuity, the trajectory matrix will look like 

 

Let us compute the rank of such a trajectory matrix, when S3 is skipped. For simplicity, let y= e –iαn, 

then Sn=Wyn. Therefore, 

 

 

After reduction of each line by its common factor (that will not change the rank), the matrix is 

 

Equation (6) shows that in this case the trajectory matrix has a rank r=3 (the 3rd and the 4th rows are 
the same and cannot be expressed as a linear combination of the 1st and 2nd rows). 

 

Similarly, it is easy to show (by substitution of expressions for Sn and reducing the matrix to row  

echelon form) that when S2 is dropped the rank of the corresponding trajectory matrix r=2; for S4 r=4 

etc., as shown in Table 1. 

 

Table 1. Trajectory matrix rank versus fault location in a filter window 

 

This means that if we have this type of discontinuity and use a running window for filtering, the  

minimum rank of the trajectory matrix sufficient for representing the traces would increase to its  

maximum as the centre of running window approaches the fault. However, in SSA we have the flexibil-

ity to approximate the trajectory with a matrix of higher ranks. The following synthetic examples  

demonstrate that even with a non-maximum rank, Cadzow FX method provides better results than the 

conventional FX.  
 

Examples 
The objective of the following synthetic examples was to find the limitations of both methods, FX and 

Cadzow FX, in preserving the resolution of complex structures including faults. No random noise was 

added since we were mostly interested in how well the structure is preserved after the filtering. Various  
parameters were tested for both the FX and Cadzow FX filters such as filter lengths, window lengths 

and rank. 

 

Results of both methods FX and Cadzow FX depend on the selection of parameters. Bearing that in 

mind, we tested a range of parameter values for both methods to compare the best results of each. 

Figure 3 shows fault images at some tested window lengths and the numbers of samples for FX filtering 
and Figure 4 shows the same fault after application of Cadzow filter at different ranks and window 

lengths. The Cadzow filter shows some noise at the fault zone for 8 traces and rank 3 due to the ratio 

between the window length and the rank but all other results are better than the conventional FX  

filtering. 

 

Figures 5 and 6 show the best results for both methods with the difference displays showing more  
signal removed with the FX filter than with the Cadzow FX filter, particularly in the faulted area. The 

real data examples shown in Figures 7-9 confirm the results found in the synthetic data and show  

better random noise attenuation when using the Cadzow FX filter. 

 

 

Conclusion 
The test results on the synthetic data show that the Cadzow FX method works better than the  
standard FX filter in preserving discontinuities. Our data examples also show an improvement when 

using the Cadzow FX filter. This is due to the fact that the FX filter assumes constant dips within the 

design window whereas the Cadzow is based on a matrix rank reduction using SVD resulting in better 

modeling of the complex structure. 

 

Theory 
The philosophy of Cadzow and Eigenimage filtering utilizes an approximation of the matrix A by another 
matrix Ar of a lower rank r. Figure 1 shows examples of a lower rank matrix approximation. 

 

Figure 1. Examples of matrix approximation with lower rank matrix 
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In seismic data processing these complex matrices are composed of Fourier coefficients of traces for 

each constant frequency slice. The difference between methods like Eigenimage, Cadzow, Hybrid and 

other rank-reduction filters is in how these corresponding traces are arranged in the frequency slice 
matrix. 

1. Eigenimage filtering 2. Cadzow filtering 

M= (1) 

Mr =  (6) 

Omitted Sn number 2 3 4 5 6 7 

rank 2 3 4 4 3 2 

Seismic data for Figures 7—9 courtesy of: 

Figure 7:  
Structured Stack 

Figure 8:  
Structured Stack w FX 

Figure 9:  
Structured Stack w Cadzow FX 

Figure 5: F-X Filter 

          Input       FX Filter      Difference     Input Data      Cadzow FX    Difference  

Figure 6: Cadzow Filter 

Rank 100                                Rank 120                              Rank 150 

Original image 309 x 309        Rank 35 approximation                   Rank 90 

3. Hybrid (C2) filtering 4. Hybrid (C2) filtering—an example 

where Ai =  

M= 
(4) 

3 3 
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Figure 3: F-X Filter Figure 4: Cadzow Filter 

Window length (traces) Window length (traces) 
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