Diffraction imaging analysis provides improved fault geometry interpretation, better understanding of the fault seal, reservoir scale fault compartmentalization and permeability, reservoir fluid flow, etc.

Standard processing workflows are suitable to image larger subsurface geological features and faults. In standard processing human eyes are focused on continuous reflections but not on details within layers. Small scale discontinuities that cause diffractions on seismic records are lost during standard processing in favor of continuous reflectors.

This diffracted energy is of great importance and is lost in stacking processes that are applied in standard seismic processing and imaging procedures. Diffracted energy carries high resolution information of small scale discontinuities and subsurface geological features, such as isolated scatters and reflector edges, which are often of high interest in seismic interpretation. After diffraction imaging processing, faults with small displacements are revealed on the seismic, allowing interpreters to conduct fault analysis in greater detail.

The main challenge for generating diffraction images is that diffraction energy is usually much weaker than, and often overwhelmed by, the reflection.

At Absolute Imaging we utilize technology that is able to decompose and separate the wavefield into specular reflection and diffraction energy. Decomposition is conducted without integration or stacking, so that the lower energy associated with subsurface diffractions can be isolated and subsequently enhanced.

Imaging of diffraction energy is enabled by a rich multi-dimensional decomposition defined by generating full-azimuth directional gathers.
For each imaging point in the subsurface, 5D decomposition is conducted in the Local Angle Domain—structural dip and azimuth. By performing this process in the full azimuth local-angle domain, energy associated with high-resolution diffraction events is preserved.

These decomposed wavefields form Directional Gathers that are not typical depth angle gathers. They retain structure dip angle and high resolution continuous 0-360 degree azimuthal information. These gathers carry very detailed azimuthal resolution. After application of a weighting filter on the Directional Gathers, we are able to create two new depth migration stack types – Specular Weighted Stack and Diffraction Weighted Stack.

Specular Weighted Stack provides the most continuous image, while retaining crisp faulting used to emphasize and interpret major continuous events and major discontinuities. Diffraction Weighted Stack provides the image with the sharpest detail of faulting and lithologic discontinuities used to interpret and delineate high-resolution subsurface stratigraphic and structural features. Diffraction Weighted Stack can detect reservoir heterogeneities that are completely obscured by standard imaging procedures.

Absolute Imaging also possesses great visualization tools that can co-visualize both specular and diffracted energy stacks for improved interpretation.
CONTACT US

global expertise and personalized service

Absolute Imaging Inc.
Suite 400
1011 – 1st Street SW
Calgary, Alberta
Canada, T2R 1J2

Telephone: 1.403.245.3001
info@absoluteimaging.ca

Absolute Imaging International Inc.
Calle 109
Número 14B-60 of 205
Edificio Lemaya
Bogotá, Colombia

Telephone: +57 3127546876
info@absoluteimaging.ca

Absolute Imaging International (India) Pvt Ltd.
2nd Floor, Office No. 6
Tower II of Stellar IT Park
Plot No C-25, Sector 62
Noida, India

Telephone: +91 1204231428
info@absoluteimaging.ca

www.AbsoluteImaging.ca

- Land, Marine & Transition Zone Processing 2D, 3D & 4D
- Multicomponent Processing
- Environmental Near Surface Imaging
- Depth Imaging | Diffraction Imaging
- Reservoir Characterization
- Seismic Data Services