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Summary 

I present a flexible noise attenuation using a frequency domain 3D greedy Radon transform that 
simulates local seismic data with limited number of dips in two directions. For 2D case, the two 
directions correspond to CDP and offset, and for 3D case, they correspond to inline and 
crossline of cross-spread gathers. The solution is computed by a greedy approach. Particularly 
events with larger amplitude are solved earlier than those with smaller amplitude. Both synthetic 
and real data examples show that the algorithm can effectively suppress random noise and 
preserve signal. It can also reduce high-dip linear noise because only a limited number of 
moveout parameters are used in the inversion. Due to the flexibility of Radon transform in 
handling survey geometry, the algorithm can process data with irregular spatial sampling, and it 
does not lose seismic traces due to binning as required by many conventional methods. 
 

Theory 

 
Seismic data contains both random noise and coherent noise. Usually they are treated in 
different ways in seismic data processing. In this paper I mainly focus on removing random 
noise, although the proposed method can also reduce aliased linear noise as I show later in this 
paper. Because random noise is not predictable, it cannot be modelled by linear systems. We 
can reduce random noise by simulating seismic data with linear equations. Naturally the 
residual is the random noise. We can have different random noise attenuation methods based 
on different linear systems. For example, the classic prediction filtering method (Canales, 1984) 
assumes that a seismic trace can be predicted by summing nearby traces with proper weights in 
the FX (frequency and space) domain. The task is to optimize the weights with redundant linear 
equations, then predict clean data with the weighted sum of nearby traces using the optimized 
weights. Another example is the polynomial approach (Wang, 2004). The method tries to fit data 
with polynomials based on observed data and its spatial coordinates by solving for coefficients 
of polynomials. The clean data is then modelled with the optimal coefficients and the 
coordinates. A recent popular method called Cadzow filtering (Trickett, 2002; Tricket, 2015) 
assumes that coherent signal is contained in the first few strong eigenvectors of a Henkel 
matrix. Note that both the prediction filtering method and Cadzow filtering method need to have 
data on a regular grid. In reality, this requirement is almost always compromised due to limited 
financial budget and complex surface condition. A practical solution is to bin the data on a 
predefined grid. The binning process introduces errors in the data prediction, and if there are 
multiple traces located in a bin, only one trace will be processed. The polynomial method can 
handle irregular geometry, but it struggles to handle structured data.  
 
To overcome the shortcomings of conventional methods, I use a 3D Radon transform to setup a 
linear system to predict seismic data. Radon operators can honor true locations of seismic 
traces, and they can handle spatially aliased data with sparseness constraints (Thorson and 
Claerbout, 1985; Sacchi and Ulrych, 1995; Herrmann et al., 2000; Trad et al, 2003; Hugonnet 
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and Boelle, 2007). In the past, Radon transform has mainly been used as a tool to remove 
coherent noise (e.g., linear noise and multiples). The idea is to focus seismic events in the 
Radon domain, and then the model of noise is extracted and transferred back to the space and 
time domain. Finally the predicted coherent noise is subtracted from the input. Here for random 
noise attenuation, I simply subtract the data misfit of inversion from the input.  
 
The 3D Radon transform is much more expensive than the conventional 2D Radon transform 
because the model space grows by one dimension. To make the algorithm practical, we have to 
limit the model space by amplitude thresholding. One example is to conduct a full-rank inversion 
over filtered data and then solved most dominant events for full-bandwidth inversion (Wang and 
Nimsaila, 2014). Here I show that we can accomplish the goal by prioritizing the adjoint solution 
for each frequency. 
 
In the space and temporal frequency (FX) domain, noise-free seismic data can be modelled 
using the following equation: 
 

𝑑(𝑥, 𝑦, 𝜔) = ∑ 𝑚(𝑝𝑥 , 𝑝𝑦, 𝜔)𝑒𝑖𝜔(𝑝𝑥𝑥+𝑝𝑦𝑦)

𝑝𝑥,𝑝𝑦

,                                                                                                  (1) 

 
where x and y are two spatial coordinates, 𝑝𝑥and 𝑝𝑦 are slopes (normalized moveout 

parameters) in two spatial directions, 𝑑(𝑥, 𝑦, 𝜔) is seismic data in the FX domain, 𝑚(𝑝𝑥 , 𝑝𝑦 , 𝜔) is 

the Radon model in the p and temporal frequency domain, The adjoint of Equation (1) can be 
expressed as 
 

𝑚(𝑝𝑥 , 𝑝𝑦, 𝜔) = ∑ 𝑑(𝑥, 𝑦, 𝜔)

𝑥,𝑦

𝑒−𝑖𝜔(𝑝𝑥𝑥+𝑝𝑦𝑦).                                                                                                   (2) 

 
Equation (2) describes a slant-stacking process in the FX domain to transform seismic data to a 
Radon model. 
 
Considering noise we can modify Equation (1) in a matrix form as below 
 
𝑑 = 𝐿𝑚 + 𝑛,                                                                                                                                                                 (3) 
 
where 𝑑 is the seismic data as a vector, 𝐿 is the forward operator as a matrix,  𝑚 is the Radon 

model as a vector, and 𝑛 is the random noise as a vector. To attenuate the noise is equivalent 
to minimize the following cost function: 
 

𝐽(𝑚) = ‖𝑑 − 𝐿𝑚‖2.                                                                                                                                                     (4) 
 
To avoid overfitting the noise, I regularize the model using the following cost function instead 
 

𝐽(𝑚) = ‖𝑑 − 𝐿𝑚‖2 + 𝜇𝑅(𝑚),                                                                                                                                 (5) 
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where 𝑅 is a regularizing function based on a priori information of the model, and  𝜇 is a trade-
off parameter to determine the amount of regularization. A lot of work has been devoted to 
imposing sparseness to the Radon model. For example, L1 norm or Cauchy norm can be used 
to enhance model resolution (Sacchi & Ulrych, 1995). Alternatively, a greedy approach (Ng and 
Perz, 2004) can be adopted to obtain a model with even higher resolution. There is no explicit 
regularizing function for the greedy method. The sparse feature is achieved by a prioritized 
inversion based on the amplitude of the Radon model. Below is a greedy implementation for the 
frequency domain 3D Radon transform: 
 

1. Convert data from 𝑑(𝑥, 𝑦, 𝑡)) to 𝑑(𝑥, 𝑦, 𝜔) (i.e. from TXY to FXY domain) by 1D Fourier 
transform along the time direction.  

2. Loop over frequencies to find an optimal Radon model for each frequency using the 
following algorithm in pseudo code. 
 

𝑑𝑟𝑒𝑠𝑖 = 𝑑, 𝑚 = 0; 
𝑓𝑜𝑟 𝑖𝑡𝑒𝑟 = 1, 𝑛𝑖𝑡𝑟 

𝑚𝑒 = 𝐿′𝑑𝑟𝑒𝑠𝑖;  
                //Note: 𝐿′ is the adjoint operator described by Equation (2). 
 

    𝑠𝑜𝑟𝑡  𝑚𝑒  𝑖𝑛 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑎𝑛𝑑 𝑘𝑒𝑒𝑝 𝑡ℎ𝑒 𝑠𝑜𝑟𝑡𝑖𝑛𝑔 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑜𝑓 𝑓𝑖𝑠𝑡 𝑁  
                   𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑠 𝐼𝑠

𝑖, 𝑖 = 1, 𝑁; 
    𝑓𝑜𝑟 𝑖 = 1, 𝑁 

  𝑚𝑒
𝐼𝑠

𝑖

= 𝐿𝑖′
𝑑𝑟𝑒𝑠𝑖;  

  //Note: 𝑚𝑒
𝐼𝑠

𝑖

 is the adjoint model for one single pair of 𝑝𝑥 and 𝑝𝑦, and 𝐿𝑖′
is simply  

  //to apply the adjoint operator for a single pair of 𝑝𝑥 and 𝑝𝑦. 

 

  𝑑𝑒 = 𝐿𝑖𝑚𝑒
𝐼𝑠

𝑖

;  

 //Note: 𝐿𝑖is to apply the forward operator describe by Equation (1) for a single pair of  
// 𝑝𝑥 and 𝑝𝑦, 

 

   𝛼 =
<𝑚𝑒

𝐼𝑠
𝑖

,𝑚𝑒
𝐼𝑠
𝑖

>

<𝑑𝑒,𝑑𝑒>
;  

//Note: <> denotes inner product of two vectors. In this step, a steepest descent  
//algorithm is used to find the optimal scalar. 
 

  𝑚 = 𝑚 +  𝛼𝑚𝑒
𝐼𝑠

𝑖

; 

        𝑑𝑟𝑒𝑠𝑖 = 𝑑𝑟𝑒𝑠𝑖 −  𝛼 𝑑𝑒; 
                      𝑒𝑛𝑑; 
           𝑒𝑛𝑑; 
             𝑑𝑐𝑙𝑒𝑎𝑛 = 𝑑 − 𝑑𝑟𝑒𝑠𝑖 ;  
 

3. Convert clean data from 𝑑𝑐𝑙𝑒𝑎𝑛(𝑥, 𝑦, 𝜔) to 𝑑𝑐𝑙𝑒𝑎𝑛(𝑥, 𝑦, 𝑡) by 1D inverse Fourier transform. 
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The algorithm is similar to the anti-leakage Fourier transform (Xu et al, 2005) except that it uses 
a different operator and solver. First of all, Radon transform instead of Fourier transform is used 
so that it is more straightforward to control the dip range of seismic data. Second of all, in this 
algorithm there is no need to recalculate the full adjoint model after optimizing a single pair of 
moveout parameter (𝑝𝑥 and 𝑝𝑦),  A series of similar moveout parameters are solved after each 

amplitude prioritization, which can improve convergence and significantly reduce the 
computational cost without scarifying the resolution. Typically 6-8 iterations of the outer loops 
are enough to obtain a satisfactory result. The number of dips (N as described in the pseudo 
code) to solve in the inner loop is usually set to 20-40, a small fraction of the total number of the 
Radon model elements. Therefore the main cost of the algorithm is the step of computing the 
full adjoint model in the outer loop, which is used to find dips with maximum amplitude.  
 
It is straightforward to see that the algorithm can be utilized to attenuate random noise for 3D 
data in the cross-spread domain. The spatial coordinates are corresponding to those of inline 
and crossline CDP distance within a cross-spread gather. For 2D data, we can apply the 
method to CDP domain data by modifying the operators as below 
 

𝑑(𝑥, ℎ, 𝜔) = ∑ 𝑚(𝑝𝑥 , 𝑝ℎ , 𝜔)𝑒𝑖𝜔(𝑝𝑥𝑥+𝑝ℎℎ2)

𝑝𝑥,𝑝ℎ

,                                                                                                  (6) 

 
where 𝑥 is the CDP distance, and ℎ is the offset. Note that a parabolic transform is used in the 
offset direction to accommodate data after NMO correction.  
 
Accordingly, the adjoint of Equation (6) is 
 

𝑚(𝑝𝑥 , 𝑝ℎ , 𝜔) = ∑ 𝑑(𝑥, ℎ, 𝜔)

𝑥,ℎ

𝑒−𝑖𝜔(𝑝𝑥𝑥+𝑝ℎℎ2).                                                                                                   (7) 

 
In practice, we often limit the ranges of moveout parameters to be big enough to model the 
signal but not linear noise with large dips. Consequently the linear noise is not modelled, and it 
remains in the residual. Therefore the algorithm can naturally remove linear noise with large 
dips (often aliased).  
 

Synthetic example 

To validate the new algorithm, I prepared a set of 2D CDP gathers with parabolic moveout in the 
offset direction and linear moveout in the CDP direction. To demonstrate the advantage of 
Radon transform in handling irregular geometry, the offsets of CDP gathers were set to irregular 
values as shown in Figure 1.  
 
Figure 2 compares the results of FXY prediction filtering (Canales, 1984) and the proposed 
method. It can be seen that the new method provides a slightly cleaner result than the classic 
FXY prediction filtering method. More importantly, it can preserve the signal better when the 
offset binning error cannot be ignored. The FXY method tends to smooth out events when there 
is jittering related to irregular offsets. On the other hand, the new method is not affected by this 
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problem because true offsets are honored in the forward and adjoint operators during inversion. 
In addition, there are fewer artifacts in the greedy Radon result than those in the FXY result. 
FXY filtering seems to organize random noise and generate unwanted linear events.  

 
Figure 1: Offset distribution of the synthetic data used to compare two different denoise algorithms. The 
data contains 15 CDPs, and each CDP contains 15 irregular offsets.  

 

Field data examples 

I also tested the algorithm with a real 2D dataset and a 3D dataset. Figure 3 compares the 
denoising results of two-pass FX prediction filtering and the greedy Radon transform. For 
simplicity, I ran FX prediction filtering in the common shot domain and then sorted data to the 
common receiver domain. The second pass FX prediction filtering was applied in the common 
receiver domain. Finally the data was sorted back to the shot domain for quality control. The 3D 
greedy Radon was applied in the CDP domain directly. The result was then sorted to the shot 
domain for comparison. It is clear that the greedy Radon transform more effectively suppresses 
the random noise at the near offset. Erratic noise is also suppressed.  Careful comparison of the 
data residuals (Figure 3d and Figure 3e) shows that the new method can preserve the signal 
better than the FX prediction method. Note that the minor signal leakage can be easily 
recovered by matched filtering after we obtain a clean dataset, but the topic is beyond the scope 
of this abstract. Of course the result of FX prediction filtering can also be improved by the 
matched filtering but with less success. 
 
Interestingly, the linear noise with large dips is also suppressed by the greedy Radon transform. 
As explained in the theory, this is not a surprise because the dips of the linear noise are beyond 
the predefined moveout range for the inversion. By contrast, the linear noise can be predicted 
by the FX prediction method. Therefore and it is not removed. Note that most of the linear noise 
has been removed in the pre-processing stage using shot domain algorithms. Here the new 
method only deals with residual linear noise that is difficult to remove with conventional 
methods. Theoretically we can also remove linear noise by modeling and subtraction, but it will 
be more expensive because we need to increase the range of moveout parameters. 
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Figure 2: A comparison of denoising with the FXY prediction filtering and the greedy Radon transform. (a) 
Input synthetic CDP gathers. (b) Result of the FXY prediction filtering. (c) Result of the greedy Radon 
transform. (d) Residuals of the FXY prediction filtering. (e) Residuals of the greedy Radon transform. 
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Figure 3: A real 2D example to compare denoising with the two-pass FX prediction filtering and the 
greedy Radon transform. (a) Input shot gather. (b) Result of the two-pass FX prediction filtering. (c) Result 
of the greedy Radon transform. (d) Residuals of the two-pass FX prediction filtering. (e) Residuals of the 
greedy Radon transform. 

 

 
Figure 4: A real 3D example to compare denoising with FXY filtering and the greedy Radon transform. (a) 
Input cross-spread gather (one receiver line). (b) Result of FXY filtering. (c) Result of the greedy Radon 
transform. (d) Difference of FXY filtering. (e) Difference of the greedy Radon transform. 
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Figure 4 compares the denoising results of a 3D dataset using FXY predition filtering and the 
greedy Radon transform. FXY filtering is very efficient in smoothing events in this case, but it 
tends to lose short wavelength details of seismic events (see the difference plot in Figure 4d).  
The red arrows in Figure 4 highlight the event with subtle structure variations that can be used 
to evaluate the performance of different noise attenuation algorithms. Figure 4c shows that the 
3D greedy Radon transform can preserve geological details, and the data residuals (see Figure 
4e) confirm this observation. One advantage of Radon transform is that it has more freedom to 
control data fitting by adjusting range of moveout parameters and number of dips to solve in 
each greedy search as described in the pseudo code.  
 

Conclusions and discussions 

 
I have implemented an efficient noise attenuation algorithm using a frequency domain 3D 
greedy Radon transform. The method can effectively reduce random noise and residual linear 
noise and preserve signal even when data is highly structured. The algorithm can be used for 
both 2D and 3D data in different domains.  
 
The idea of optimizing multiple dips in the inner loop after sorting all events based on amplitude 
enables us to reduce the computational cost of greedy algorithms for higher dimension data. A 
straightforward application is to develop 4D/5D interpolation algorithms to improve spatial 
sampling of seismic data.  
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